Featured System – Solar Tribune https://solartribune.com Solar Energy News, Analysis, Education Tue, 14 Sep 2021 16:08:16 +0000 en-US hourly 1 https://wordpress.org/?v=5.1.10 Small Modular Reactors: Launching in 2018 https://solartribune.com/small-modular-reactors-launching-in-2018/ Tue, 14 Aug 2018 18:13:11 +0000 http://solartribune.wpengine.com/?p=13994 Small modular reactors (SMRs) are an innovation on nuclear plant design that could replace coal-fired steam turbines with zero or near-zero carbon emissions.  While there are approximately 50 SMR designs around the world, only NuScale, an SMR-startup based in Portland, Oregon, has sought US licensing.   NuScale cleared stage one of the US Nuclear Regulatory […]

The post Small Modular Reactors: Launching in 2018 appeared first on Solar Tribune.

]]>
Small modular reactors (SMRs) are an innovation on nuclear plant design that could replace coal-fired steam turbines with zero or near-zero carbon emissions. 

While there are approximately 50 SMR designs around the world, only NuScale, an SMR-startup based in Portland, Oregon, has sought US licensing.  

NuScale cleared stage one of the US Nuclear Regulatory Commission (NRC) approval process in April, 2018 leading to hopes for a renewed US nuclear energy program.  

“Renewables are not capable of meeting 100 percent of our global energy needs,” says NuScale Communications Director Mariam Nabizad. “By adding the reliable, flexible carbon-free energy NuScale can provide to complement solar and wind, we can make a real difference in mitigating climate change. This remains a top priority for our customers and prospects, both across the U.S. and around the world.”

Here’s what you need to know about this technology in the context of renewables:

BASICS OF SMR

The key word for the SMR nuclear reactor design is ‘flexible’.   

  • They can provide variable output to “load-follow”, which keeps an electrical grid balanced as renewables like sun and wind rise and fall, and demand varies.
  • They can power small grids or provide graduated support on a big one.
  • They can provide options for utility companies to diversify into reduced-carbon nuclear power without the large scale investment of standard plants.

SMRs currently represent a favorable interim investment for North American nuclear energy, which has slowed construction of standard nuclear designs in recent years.

The US leads the world nuclear industry in reactor design.  But while the US has more operating reactors (61 plants, 99 reactors, constructing 2 reactors ),  recently China (40 reactors, constructing 20 reactors) and Russia (35 reactors, constructing 20 reactors) have become far more efficient at rolling out the technology for public use.   

Civilian use of nuclear power has geopolitical implications. In 2016 the US Secretary of Energy Ernest Moniz warned that the failure to invest in nuclear energy had the potential to significantly weaken the US’s position in global non-nonproliferation negotiations.

As the first, and only SMR design to seek US licensing NuScale is leading the pack to restore the US nuclear economy.  NuScale’s product design was funded by $228 million in grants from the US Department of Energy, it’s first customer is the municipal association Utah Associated Municipal Power Systems and the potential buyers reported by the New York Times include Tennessee Valley Authority.  Future design competitors may include Westinghouse with an SMR design on hold, GE as a recent market entry with a boiling water design, and even smaller “microreactor” designs from HolosGen and Oklo.

Across the border, Canada’s federal authority, the Canadian Nuclear Safety Commission (CNSC), is rapidly collecting public feedback in the midst of updating its regulatory strategy for SMRs.

CNSC is addressing key questions about the regulatory and licensing implications presented by SMRs,” says Cristina Canas, a senior communications advisor. “To meet regulatory requirements, safety claims must be supported by suitable scientific information.”

No energy technology is without debate. SMRs haven’t had a chance to prove themselves in the day-to-day life of North Americans. This is why there are both passionate proponents and dire predictions of gloom regarding their future.

However, when it comes to utilizing new technology, society always includes a wide spectrum of tech innovators, early-adopters, late-adopters and laggards. So, the best way to beat the hype, pacify naysayers, and determine the true commercial viability of a new product is from a trial of pragmatic implementation.

Here’s hoping NuScale can execute its vision to offer the world a safer and more flexible energy to complement renewables!

By Drea Burbank, MD, Peter Worden and Prachur Shrivastava.  Drea is a science writer, Peter is a veteran journalist and Prachur is an experienced researcher.  Image NuScale Small Modular Reactor Design courtesy of NuScale Power.

The post Small Modular Reactors: Launching in 2018 appeared first on Solar Tribune.

]]>
Lovington, NM to Launch Solar Trash Can Pilot https://solartribune.com/lovington-nm-to-launch-solar-trash-can-pilot/ Tue, 11 Nov 2014 15:10:48 +0000 http://solartribune.wpengine.com/?p=8192 Lovington, New Mexico is the latest city to consider solar-powered trash cans as a way to save money. The solar trash cans compact the trash, cutting down on overflow and reducing the number of weekly pickups required. The Albuquerque Joural reports that regular trash containers in public places must be picked up between three and […]

The post Lovington, NM to Launch Solar Trash Can Pilot appeared first on Solar Tribune.

]]>
Lovington, New Mexico is the latest city to consider solar-powered trash cans as a way to save money. The solar trash cans compact the trash, cutting down on overflow and reducing the number of weekly pickups required.

image: bigbelly.com

image: bigbelly.com

The Albuquerque Joural reports that regular trash containers in public places must be picked up between three and five times a week, according to Jeff Sabin, government affairs manager for Waste Management, the companying selling the high-tech bins. “We’re reducing the carbon footprint,” Sabin said. “Fewer collections save the company money.”

The solar trash bins being considered for the pilot program are similar to those currently being used in other cities, like, Boston, Chicago and Philadelphia. The 300-pound boxes, made by Big Belly Solar, cost about $3,800. One side of the unit is for recycling, the other for trash. They are powered by a 12 volt, integrated off-grid solar panel.

James Williams, Lovington City Manager says, “I would like to attempt a pilot program deploying two to four of these in the downtown area to see how they work,” Williams told city commissioners at a recent meeting. “I think it would help with some long-term savings in staff and fuel costs.”

Although the solar trash compacting bins are being used in many of the larger cities in the U.S., Lovington is one of the first smaller cities to consider the solar trash cans. Lovington has a population of about 11,000. Fort Collins, Colorado, Jupiter Florida and Raleigh and Charlotte, North Carolina are currently using the Big Belly units.

The post Lovington, NM to Launch Solar Trash Can Pilot appeared first on Solar Tribune.

]]>
Small College Makes Solar a Big Priority https://solartribune.com/small-college-makes-solar-a-big-priority/ Mon, 10 Nov 2014 02:09:16 +0000 http://solartribune.wpengine.com/?p=8181 Nestled among the cornfields of Southeastern Iowa, Maharishi University of Management is not your typical small college. More than 40 years after its founding, this unique campus has become a showcase of sustainability and solar technology. Maharishi Mahesh Yogi, best known as man who taught meditation to The Beatles, bought the defunct Parsons College campus […]

The post Small College Makes Solar a Big Priority appeared first on Solar Tribune.

]]>
Nestled among the cornfields of Southeastern Iowa, Maharishi University of Management is not your typical small college. More than 40 years after its founding, this unique campus has become a showcase of sustainability and solar technology.

Maharishi Mahesh Yogi, best known as man who taught meditation to The Beatles, bought the defunct Parsons College campus in Fairfield, Iowa in 1971 and set up an accredited university to teach his philosophy of world peace and enlightenment through meditation. Along with computer science, accounting and BA, MA and PhD programs, the curriculum stresses healthy lifestyles and a healthy environment.

Biology Professor David Fisher launched the nation’s first four year BA program in Sustainable Living at MUM in 2003. The Sustainable Living Department offers courses in solar, wind and other alternative energy systems, water management, permaculture, alternative building techniques, and performance design for the built environment, and their building serves as a hands-on showcase for the technologies they teach. On an annual basis, the building is not only a “net zero” building, but actually produces as much as 40% more energy than it consumes. The excess energy offsets electricity used elsewhere on campus.

The south wall of the MUM Sustainable Living Center.

The south wall of the MUM Sustainable Living Center.

Opened in 2012, the Schwartz-Guich Sustainable Living Center at MUM is a showpiece of green building technology. The 6,900 square foot building features sustainable infrastructure including daylighting, a greenhouse and edible landscaping, gardens, rain catchment, earth block and “whole tree” construction and both solar thermal and solar photovoltaic (PV), as well as a wind turbine. The architectural style, known as “Vedic” architecture, marries eastern and western styles and reflects the philosophy of the university, while exceeding LEED platinum standards.

Daniel Chiras PhD is currently a visiting professor at the Sustainable Living Center. Dan serves as the Director of the Evergreen Institute and is author of over 30 books on solar and sustainability topics, including The Natural House, The Solar House, The Homeowner’s Guide to Renewable Energy and many more. Chiras said of the MUM building: “The Sustainable Living Center is one of the greenest—if not the greenest—classroom buildings on a college campus in the world! It’s an extraordinary model of ecological sustainability and an inspiration to those seeking to build a sustainable human future. The building is a pleasure to teach in and a great learning tool for students.”

Solar Features At The SLC:

The Sustainable Living Center sports 12.5 kW of PV panels to provide electricity. The PV panels are grid-tied by two 2.5 kW and one 5 kW SMA Sunny Boy inverters. An Outback 3.6 kW battery based inverter also stores energy in an off-grid battery bank. The solar PV at the Center puts out an average of 16,250 kWh per year.

A drain-back solar water heating system with 750 square feet of evacuated tube solar thermal collectors capture solar energy that is then stored in a 5,000 gallon tank, where it is then pumped through the in-floor heating system. The collectors provide about 30 % of the heating for the building. Additional heat comes from a ground source heat pump, which uses electricity from the solar and wind systems to provide 75,000 BTUs per hour.


In addition to the solar arrays, The Sustainable Living Center features a Bergey XL 10 wind turbine on a 100 foot latticed tower. The estimated annual output is 17,000 kWh, with power production peaking in the winter and spring. This compliments the solar PV, which produces most of its power during the summer months, when wind speeds are typically much lower.

The SLC has an annual energy use of about 30,000 kWh, including lighting, heating and cooling, fresh air circulation office equipment and classrooms, which is already amazingly low for a building of its size.

Not only at the Sustainable Living Center, but across the entire MUM campus, sustainability initiatives are in full effect. In fact, the school achieved a perfect score for sustainable food sourcing and is the first college in the United States to offer an organic, 100% vegetarian menu. The college encourages bicycling and energy efficiency and is currently in the planning stages of a large-scale solar array to offset more of their electrical use with solar energy.
Read more about the MUM Sustainable Living Center at: https://www.mum.edu/academic-departments/sustainable-living/buildings/sl-bldg/

The post Small College Makes Solar a Big Priority appeared first on Solar Tribune.

]]>